
Very High Resolution Simulation of Compressible Turbulence

on the IBM-SP System∗

A. A. Mirin† R. H. Cohen† B. C. Curtis† W. P. Dannevik†

A. M. Dimits† M. A. Duchaineau† D. E. Eliason† D. R. Schikore†

S. E. Anderson‡ D. H. Porter‡ P. R. Woodward‡ L. J. Shieh§

S. W. White§

Abstract

Understanding turbulence and mix in compressible flows is of fundamental importance to
real-world applications such as chemical combustion and supernova evolution. The ability to
run in three dimensions and at very high resolution is required for the simulation to accurately
represent the interaction of the various length scales, and consequently, the reactivity of the
intermixing species. Toward this end, we have carried out a very high resolution (over 8 billion
zones) 3-D simulation of the Richtmyer-Meshkov instability and turbulent mixing on the IBM
Sustained Stewardship TeraOp (SST) system, developed under the auspices of the Department
of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) and located at Lawrence
Livermore National Laboratory. We have also undertaken an even higher resolution proof-
of-principle calculation (over 24 billion zones) on 5832 processors of the IBM system, which
executed for over an hour at a sustained rate of 1.05 Tflop/s, as well as a short calculation
with a modified algorithm that achieved a sustained rate of 1.18 Tflop/s. The full production
scientific simulation, using a further modified algorithm, ran for 27,000 timesteps in slightly over
a week of wall time using 3840 processors of the IBM system, clocking a sustained throughput
of roughly 0.6 teraflop per second (32-bit arithmetic). Nearly 300,000 graphics files comprising
over three terabytes of data were produced and post-processed. The capability of running in
3-D at high resolution enabled us to get a more accurate and detailed picture of the fluid-
flow structure - in particular, to simulate the development of fine scale structures from the
interactions of long- and short-wavelength phenomena, to elucidate differences between two-
dimensional and three-dimensional turbulence, to explore a conjecture regarding the transition
from unstable flow to fully developed turbulence with increasing Reynolds number, and to
ascertain convergence of the computed solution with respect to mesh resolution.

1 Introduction
The simulation of turbulence and mix has been one of the most demanding challenges of com-
putational hydrodynamics. Many real-world applications (e.g., chemical combustion, supernova
evolution, supersonic transport) are strongly dependent on the extent and structure of interpen-
etration of disparate fluids. For example, the characteristic scales of the interpenetrating species
affect the surface area to volume ratio, and hence the reactivity of the species. Often there is such a
wide range of length scales that very high resolution is required for the simulation to accurately re-
flect how these scales interact. Moreover, for turbulent flows that are inherently three-dimensional,
the two-dimensional approximation is often inadequate because of a tendency for those flows to
develop an inappropriate inverse energy cascade. Highly compressible flows provide an even greater

∗This is LLNL Report UCRL-JC-134237.
†Lawrence Livermore National Laboratory, Livermore, CA
‡University of Minnesota, Minneapolis, MN
§IBM, Austin, TX

1



2

challenge, as the algorithms are required to both preserve shocks yet not overly dissipate the smooth
flow.

The work presented here deals with the numerical simulation of compressible three-dimensional
flows with shocks, using spatial resolutions never before considered feasible. We utilize the simplified
Piecewise Parabolic Method (sPPM) code of Woodward, et al. [1] on the IBM-SP Sustained
Stewardship TeraOp (SST) machine at Lawrence Livermore National Laboratory (LLNL). We first
present a proof-of-principle calculation that executed at a sustained 1.05 Tflop/s rate for over an
hour. We then present a shorter proof-of-principle test that, using a modified algorithmic kernel,
executed at 1.18 Tflop/s, and then a third test that used over 70 billion computational zones.

The focus of this effort, though, is on a scientific simulation of the Richtmyer-Meshkov instability
[2], which comes about when a shock intersects a contact discontinuity. The simulation presented
here, which made use of a further modified algorithmic kernel, executed for 27,000 timesteps using
over 8 billion computational zones at a sustained throughput of 0.6 Tflop/s (32-bit arithmetic). The
project involved not only executing the code, but producing, offloading and postprocessing nearly
300,000 files containing graphics data, whose total storage exceeded 3 terabytes.

Being able to run at such high resolution enabled us to observe relevant effects that could not
be addressed at lower resolution. This allowed us to provide support for an important conjecture
involving the development of turbulence, and to demonstrate how the interaction of long and short
length scales can lead to the development of an even finer scale structure.

Section 2 discusses the sPPM code. Section 3 describes the IBM platform used for this study.
In section 4 we present the proof-of-principle tests. Section 5 describes the scientific problem,
its execution on the IBM system, and file retrieval. Section 6 addresses postprocessing and
interpretation of the data. Conclusions are presented in section 7.

2 The sPPM code

2.1 Computational algorithm
The sPPM code solves the compressible Euler equations using a simplified implementation of the
Piecewise Parabolic Method (PPM), which is a high-order accurate Godunov method developed
by Colella and Woodward [3]. In a study that helped drive the development of the PPM scheme,
Woodward and Colella [4] compared PPM to several other difference methods for problems involving
strong shocks. Use of the Godunov approach in PPM makes this numerical scheme upstream-
centered in each Riemann invariant separately. Together with nonlinear solutions of Riemann’s shock
tube problem at grid cell interfaces when strong waves are present, this upstream centering produces
sharp numerical representations of shocks on the computational grid. Monotonicity constraints
inspired by the work of van Leer with the MUSCL scheme [5], together with a numerical diffusion
term that adapts to the conditions of the local flow, keep the sharp shock fronts of the PPM scheme
from generating unwanted and unphysical noise in the solution. PPM also includes an interpolation
scheme that is fourth order accurate for small timesteps. This interpolation scheme detects contact
discontinuities in the flow solution and, when they are present, it employs an alternative interpolation
technique that helps to keep the numerical representation of these discontinuities sharp. A library
of PPM code modules, suitable for use in parallel computation, is being made available by the
Laboratory for Computational Science and Engineering at the University of Minnesota under
support from the DOE Office of Science [6].

SPPM contains several features of PPM, but significant ones have been omitted. Among those
omitted features are contact discontinuity detection and steepening, and the computation of a
coefficient of numerical viscosity that adjusts to the local needs of the flow in both space and time.
This particular implementation of sPPM makes use of a Lagrangian method combined with a remap
onto the original mesh, so that the algorithm is effectively Eulerian. The fluid is assumed to obey
a single gamma-law equation of state. The time integration makes use of directional splitting along
the three coordinate axes, with the order of directions reversing each timestep.



3

2.2 Parallel implementation
The sPPM code is written in Fortran 77 with some C routines. It uses a logically rectangular
three-dimensional domain decomposition. Each subdomain is mapped to a computational node of
the parallel architecture on which the code is being executed. Message-passing between nodes is
accomplished using standard Message Passing Interface (MPI) calls. We have modified the sPPM
driver to improve performance. The functionality has not changed (other than new restrictions on
grid size), merely the programming implementation.

For each directional update, the three-dimensional mesh is mapped into pencils of 16 x 16 x
N cells, with the long length, N, aligned along the sweep direction and the transverse directions
tiled into 16 x 16 chunks. The logical pencils are processed in an order that facilitates overlap of
communication with computation. A section of interior pencils (e.g., pencils not on the subdomain
boundary) is processed first; this is concurrent with communication from the previous directional
sweep. Next, the outer pencils (e.g., those closest to the subdomain boundary) are processed.
The remaining interior pencils are then processed while the outer pencils are sending updated
data to their transverse neighbors. After all pencil updates are complete, the new boundary data
is communicated longitudinally (i.e., in the sweep direction) as the following directional sweep
commences. Each pencil is updated with 256 separate calls to a controlling routine that updates a
single 1-D strip. The stencil requires up to 5 cells distant in the principal direction and two in the
transverse direction. Data is stored into temporary arrays for improved cache performance.

Multithreading is accomplished through POSIX threads. Additional slave threads are created,
which along with the parent process communicate through shared static memory. Synchronization
in shared memory is brought about through barriers implemented with atomic fetch-and-add
operations. Parallel loops are self-scheduled using a shared integer index. One thread performs all
of the message-passing (as well as participating in the strip updates); it assembles and disassembles
message buffers and calls the MPI routines. The remaining threads are dedicated to the strip
updates.

A second copy of the major data structure has been added so that the full range of data both
before and after the one-dimensional sweep can be stored. This replaces the circular buffering that
was used in the original driver. The availability of the second array cuts data movement in half
and facilitates overlap of communication, though at increased storage cost. Parallelization in shared
memory is with respect to pencils; strip updates within a pencil are performed sequentially.

3 IBM machine configuration
The IBM SST ASCI [7] Blue-Pacific system, located at Lawrence Livermore National Laboratory,
is comprised of three 488-node sectors, with a total CPU count of 5856. Each node contains 1.5 to
2.5 Gbytes of local memory and is powered by four 332-MHz PowerPC 604e processors. Allowing
for up to 2 operations per processor per clock period, the system peak performance is 3.9 TeraOp/s.
The processor to memory bandwidth is 2.1 Tbyte/s (aggregate), and the node to node bandwidth
is 150 Mbyte/s (bidirectional). There are 62.5 Tbytes of RAID storage, with an I/O bandwidth to
local disk of 10.5 Gbyte/s (aggregate). The three sectors are connected by six High Performance
Gateway Node (HPGN) switches, with a total of 2.4 Gbyte/s bandwidth (bidirectional).

4 Proof-of-principle tests
The proof-of-principle tests make use of the test problem provided with the sPPM benchmark. That
problem involves a shock passing through a gas with a density discontinuity. The interaction of the
shock and the discontinuity leads to the Richtmyer-Meshkov instability. These tests were performed
prior to the delivery of the machine to LLNL and utilized 5832 of the total 5856 processors.

The first proof-of-principle calculation uses the standard sPPM benchmark (without kernel
modification) on a 2304 x 2304 x 4608 grid, partitioned into a 9 x 9 x 18 domain decomposition,
each subdomain supporting a 256-cubed grid. Four threads were assigned to each subdomain. The
calculation ran for over an hour, and using 32-bit arithmetic achieved a 1.05 Tflop/s throughput.
The flops were counted according to the rules governing the machine procurement, which assign 4
flops to floating divide and sqrt, and 1 flop to all other floating point operations.



4

An execution trace tool was used to get accurate counts. A single node run with a 256 x 256
x 256 local grid was traced for 60 timesteps (same local grid and number of timesteps as the full-
system run above), resulting in counts for every instruction executed. Then the non-floating-point
instructions were discarded, and the contract rules were applied. We measured a total of 2904
billion floating point operations per node, which when combined with 1458 nodes and a 4026 second
execution time gives 1.05 (32-bit) Tflop/s.

We also measured parallel performance. Within a four-processor node, memory contention
reduces performance by about 10 percent, varying slightly with problem size, resulting in a factor of
3.6 speedup over single processor execution. Message-passing across nodes is almost entirely nearest-
neighbor, resulting in very good scaling. When the local grid is sufficiently large, the communication
is completely overlapped with computation, except for one global reduction per timestep. For 64
nodes arranged in a 4 x 4 x 4 decomposition and a 256 x 256 x 256 local grid, there is a 60.8-fold
speedup over single node operation (applied to that same local grid), and a 218.9-fold speedup as
compared to running with a single processor, for an 85.5 percent parallel efficiency. Maintaining the
same local grid and increasing the node count beyond 64 incurs very little additional loss of parallel
efficiency due to the locality of the communication. Running with our largest configuration of 1458
nodes (5832 processors) is only 2 percent slower than with 64 nodes, and has a parallel efficiency of
83.8 percent.

Next we used a version of the kernel that was heavily optimized by our IBM co-authors. The
major optimizations included elimination of unnecessary/redundant operations, changing rarely
needed unconditional operations to be conditional, moving some operations into the main routine,
minimizing the number of vector temporaries to reduce the cache footprint, recoding and/or merging
loops to improve pipelining, repartitioning loops to balance resource requirements, and making
explicit calls to the MASS (Mathematical Acceleration SubSystem) library for vector reciprocal,
sqrt and reciprocal sqrt functions.

We ran the same 2304 x 2304 x 4608 problem using the same 9 x 9 x 18 domain decomposition
for 2 timesteps and achieved a throughput of 1.18 Tflop/s. The object of the optimized kernel
was not this modest increase in flop rate, rather it was to reduce the wall time for the scientifc
calculation. The optimized kernel has approximately half the number of floating point operations
as the original kernel, and the wall time was reduced by a factor of 2. The optimized kernel reduced
the computation portion so dramatically that overlapping the communication became problematic,
especially with smaller local grids.

Finally, we attempted to investigate the largest possible problem size that we could run on the
IBM system. This involved using the original driver, since it is more memory efficient than the
optimized driver, but is slower and does not overlap communication with computation. We also
needed to use the original kernel, since the optimized kernel is incompatible with the original driver.
We found that a problem size of 1460 x 1460 x 33215, or 70.8 billion zones, would fit in the memory
of the system. Since we had to use the slow driver and kernel, the throughput was only 0.88 Tflop/s,
but even so the faster versions would not be fast enough to make a calculation of this size practical.

5 Simulation of the Richtmyer-Meshkov instability

5.1 Problem description
The scientific simulation approximates the shock tube experiment of Vetter and Sturtevant [8], in
which two gases are initially separated by a membrane pushed against a wire mesh. The actual
experiment uses air and sulfur hexafluoride, which in our calculation we approximate as a single gas
having a specific heat ratio of gamma=1.3. The contact discontinuity is located at z=0.59, where
the shock tube extends from z=0 to z=0.94 (see Fig. 1). The densities to the left and right of the
contact discontinuity are initially 1.0 and 4.88, respectively; the pressure equals 0.77 on either side.
The calculation is carried out in a reference frame in which the contact discontinuity is roughly
stationary; hence the fluid velocity on either side of the contact discontinuity is initialized to -0.47.
Boundary conditions are periodic in the transverse (x and y) directions and continuation in the
streamwise (z) direction; the latter does a good job of absorbing moderate-strength shocks.

The location of the contact discontinuity is initially perturbed. The perturbation is chosen to be



5

a superposition of a long wavelength and short wavelength disturbance, where the former represents
the distortion of the mesh as it is being pushed, and the latter corresponds to the mesh spacing.
Besides approximating the setup of an interesting experiment, this simulation provides information
on the nonlinear interaction of two disparate scales, a fundamental building block for the nonlinear
evolution of turbulence.

A shock of Mach 1.5 is applied from the low-z end. The initial shock position is at z=0.47, and
the velocity difference across the shock is 0.73. The density and pressure behind the shock are 1.93
and 1.86, respectively.

5.2 Problem execution
The shock tube simulation was run on a 2048 x 2048 x 1920 grid using 960 nodes of the IBM-SP
system arranged in an 8 x 8 x 15 domain decomposition, with four threads per subdomain, making
each node responsible for a 256 x 256 x 128 piece of the data. We were restricted in the number
of nodes (as compared to the proof-of-principle tests) since only two of the three 488-node sectors
were in place at LLNL. The particular domain decomposition and problem shape were chosen to
maximize computational resources while staying within the constraint (since relaxed) of the local
mesh being at least 128 and a multiple of 16 in each of the three directions. The problem was run
for 27,000 timesteps - just over 9 transverse sound crossing times.

The simulation executed in 173 hours of machine time, spread over 226 hours of wall time,
which was a remarkable efficiency given that the machine had just been delivered to Lawrence
Livermore National Laboratory and was not yet generally available. Each node created its own
component restart dump which was output to local disk, and immediately copied onto an additional
node as backup. This occurred roughly every three hours. Occasionally a node would fail, and
data was copied from the backup node onto a new node and the problem restarted. Each restart
dump comprised 188 Gbyte (aggregate), and twice that amount was required to accommodate nodal
backup components.

The sustained throughput was estimated to be 0.6 Tflop/s or greater. This estimate was
obtained using an execution trace tool (essentially a simulator) applied to a 256 x 256 x 128 grid,
the same size grid for which a single node was responsible in the scientific simulation. We needed
to restrict the performance measurement to the local grid size since the flop counting tool is serial.
The results of the first two timesteps indicated an initial throughput of the scientific simulation of
0.627 Tflop/s. We then observed, using the trace tool, that conditional code in the kernel causes the
flop count per timestep to increase as the execution proceeds. This increase occurs during the early
phase of the calculation and asymptotes to about 21 percent. The wall time per timestep increases
as well, but to a lesser extent than the flop count (16 percent). Therefore, the flop rate increases
slightly as the calculation proceeds. Folding in an additional (observed) 6 percent degradation due
to offloading and backup of scientific data, we cite the conservative figure of 0.6 Tflop/s for the
sustained throughput.

The floating point computation rate in the science run is clearly lower than that of the proof-
of-principle test carried out with the optimized kernel, even allowing for the lower node count. The
figure of 1.18 Tflop/s on 1458 nodes would scale to 0.777 Tflop/s for the node count of 960 that was
used in the science run. There are three main reasons for the lower rate. First, the science run utilized
an additional optimization in the kernel, namely combining the vectorized square root and reciprocal
funcitons into a vectorized reciprocal square root. This reduced wall time by 6 percent but reduced
the flop count by 15 percent, resulting in a 9.6 percent decrease in flop rate. Second, the local grid
for the science run was half as large as that of the proof-of-principle run. The smaller local grid has
a less favorable surface-to-volume ratio, yielding less overlap of communication and computation,
resulting in an 8 percent decrement in flop rate (recent optimizations in the communication strategy
have since cut that difference to 3 percent). The final difference between the science run and the
proof-of-principle run is that many system daemons were turned off for the latter. We can quantify
that effect by noting that when the proof-of-principle test was rerun at LLNL, we consistently
observed roughly 3 percent lower performance than prior to machine delivery; once the system
daemons (most notably the Global Parallel File System daemon) were turned off, the flop rate
returned to its pre-delivery value. Applying these three degradations to the 0.777 Tflop/s figure



6

yields 0.627 Tflop/s, in exact agreement with our throughput estimate for the first two timesteps.
Each node created its own component graphics data files (described below), in total comprising

over 3 Tbytes of data, spread over 275,000 files. This data was output to local disk. Once there, it
was compressed and copied (using parallel remote copies) onto the Global Parallel File System. The
copying was under the control of nodes not being utilized for the sPPM execution. This procedure
in effect accomplished asynchronous output, as the I/O took place during code execution with
minimal effect (roughly 6 percent) on throughput. The data was then offloaded onto a graphics
postprocessing machine and ultimately shipped to archival storage.

6 Postprocessing and interpretation of data
The sPPM code creates two types of graphics data files. Brick-of-byte (BOB) files contain one byte
of information per gridpoint. The byte value (0 to 255) represents the value of the physical quantity
concerned relative to the global minimum and maximum, subject to a user-specified transformation.
The simulation reported on here utilized BOB files of entropy subject to a linear transformation, so
that for example a byte value of 128 represented data halfway between the minimum and maximum.
The code produced 274 such BOB dumps, each of aggregate length 8.1 Gbyte partitioned among
960 files.

The other type of output file is the “compressed dump.” Here all of the dynamical variables (e.g.,
density, pressure, velocity, material fraction) (or the logarithm for positive definite quantities such as
density) are subjected to a linear transformation, and the representation is stored in 16-bit integer
format. Ten compressed dumps were produced, each of aggregate length 80.6 Gbyte partitioned
among 960 files. BOB files, which contain only partial and highly compressed information, are
typically used for volume renderings, whereas compressed dumps may be used for more general
purposes.

6.1 Volume rendering
The BOB data was postprocessed using the University of Minnesota volume renderer HVR
(Hierarchical Volume Renderer) on an SGI Infinite Reality engine, in which infinite reality pipes are
connected via high-bandwidth optical fiber channels to a high-capacity RAIDed array of Ciprico
disks.

HVR, still in its development phase, is an outgrowth of the earlier volume renderers “perpath”
(a serial, in core, software volume renderer) and “Bob” (an interactive extension of perpath for
which both software and SGI texture-hardware versions exist), which were also developed at the
University of Minnesota [9]. HVR is a highly efficient volume renderer which runs on, and fully
utilizes, the texture hardware on SGI Infinite-Reality-Engine computers and which has additional
special enhancements that enable it to make volume renderings at unprecedented graphical and
data resolutions. These enhancements include the use of texture hardware, parallelization across
multiple CPU’s and Reality-Engine pipes, and efficient out-of-core operation in which subregions
of the data volume are rendered and these sub-renderings combined. This out-of-core, and out of
texture-memory, operation involves fast reads of subsets of the data from a time slice from the
high-capacity disk array.

A small number of renderings have been made from the full resolution data (2048 x 2048 x
1920 bytes) at a graphical resolution of 3840 x 3072 pixels. These images have been shown in
presentations at full resolution on a 3840 x 3072 pixel SGI “Power Wall” projection system at
LLNL. A larger number of lower resolution images have been produced to animate time evolution
of the Richtmyer-Meshkov layer evolution in the simulation.

Figure 2 shows a volume rendering of entropy at the conclusion of the calculation. The shock
has moved from left to right and a very small portion has reflected off the right-hand wall. As
noted earlier, we are working in a reference frame in which the contact discontinuity, after being
encountered by the shock, is approximately stationary. Figure 3 shows the entropy for a simulation
at 384 x 384 x 384 resolution. The fine scale structure at high resolution is clearly not present at
lower resolution. A simulation at 1024 x 1024 x 1024 (see Fig. 4) indicates structure similar in
scale to that at 2048 x 2048 x 1920, whereas one at 192 x 192 x 192 (see Fig. 5) indicates structure



7

similar to that of 384 x 384 x 384. Hence, there appears to be a transition from unstable flow with
relatively large-scale structures, to turbulence. This is in accord with the conjecture of Dimotakis
[10], who argues that such a transition should occur when there is sufficient separation between
the energy-containing and dissipative scales to permit a well-developed forward cascade through an
inertial range. Had we been restricted to lower resolution, we would not have been able to verify
this transition in character. Also, comparison with visualizations of two-dimensional simulations at
the same resolutions (see Fig. 6) provides a dramatic illustration of the difference between three-
dimensional and two-dimensional dynamics (forward vs. inverse cascade); the two-dimensional
runs, rather than developing random-looking fine-scale structure at high resolution, tend to remain
characterized by extended structures but with sharper boundaries. Clearly, if the two fluid species
had been reactive, the reaction rates in these two simulations would differ substantially.

With HVR one can “fly through” the volume. Such an excursion reveals a centrally-located
cylindrical zone that contains identifiable bubbles and spikes that have survived for the duration
of the simulation. These remnants of the initial short-wavelength pertubation are situated about
the middle of the spike that originates from the initial long-wavelength perturbation. Outside of
this cylinder (throughout most of the volume), the bubbles and spikes have given way to finer-scale
turbulence. A comparison simulation of a single period of the short-wavelength perturbation shows
a surviving bubble and spike, indicating that the coupling of long and short scales has destroyed
most of the short-wavelength bubbles and spikes.

6.2 Compressed dump postprocessing
The compressed dumps are designed to be postprocessed by a3d, another member of the PPM Data
Analysis and Rendering Toolkit [9]. A3d, which has been recently generalized to work in parallel
and for large data sets, may be used to calculate any combination of algebraic, differential or integral
forms on the raw data. The fields so produced may be output in the form of histograms, power
spectra, cuts through the data, or brick-of-byte (BOB) files. Data is organized in a push-down stack
(last in, first out) and input uses inverse Polish notation. A3d is designed to accept nodal input
(one file per subdomain) and can convert between Big Endian and Little Endian formats. Like the
volume renderer HVR, the unprecedented size of this data set has motivated the modification of a3d
to run in parallel on SMP machines, run out-of-core on tiled subdomains, efficiently use and reuse
first and second level cache, and utilize fast direct I/O, with I/O and computation overlapped.

Figure 7 shows z-velocity energy spectra near the midplane for three different resolutions. At
the highest resolution, we observe an inertial range within the wave number domain of roughly 30 to
300. Because of the unprecedented resolution and the convergence trend as resolution is increased,
we have confidence that this inertial range is meaningful. According to Dimotakis’ conjecture, it
is the existence of this well-developed inertial range that allows for the observed transition of the
small-scale structures to the turbulence shown in Fig. 2. Plots of the mixing layer extent for these
three resolutions as well as comparison to experiment (see Fig. 8) indicate both convergence and
good agreement between simulation and experiment. We could not have ascertained convergence -
including a clear separation of the energy containing range, inertial range, and (numerically-induced)
dissipation range - without the 8 billion zone simulation.

7 Conclusions
We have succeeded in carrying out a scientific calculation that until now was not feasible. The
simulation used almost an order of magnitude higher resolution than previous successes and executed
at a sustained 0.6 Tflop/s (32-bit arithmetic) for over a week (exclusive of machine down time). We
were able to observe effects that could not be seen or verified at lower resolution; in particular we
provided support for an important conjecture regarding the transition from large-scale unstable flow
to fully developed turbulence, as well as evidence that the interaction of long and short wavelength
perturbations destroys the short wavelength structures in favor of finer-scale turbulence. We believe
this to be a significant advancement in our ability to simulate and understand turbulence.

We have been simulating turbulent flows for many years, but until now it has not generally
been possible to resolve within a single computation both the large-scale flow and the turbulent



8

motions that it sets up. This simulation of the Richtmyer-Meshkov instability, with its extremely
fine computational mesh, enables us to study the statisitical properties of the turbulence not in
some artificial context resulting from arbitrary initial conditions but instead in a physical context
realizable in a laboratory experiment. This achievement represents a great advance for our research.

8 Acknowledgments
We acknowledge Terry Heidelberg, Charles Athey, David Fox, James Garlick and Robin Goldstone
of LLNL, and David Moffatt and Paul Herb of IBM for their assistance in system administration
matters pertaining to the scientific simulation reported here. We acknowledge Roch Archambault
of IBM for implementing sPPM-related compiler optimizations, Catherine Crawford of IBM for
trouble-shooting last minute problems in the proof-of-principle calculations, and Andrew Wack of
IBM for testing, debugging and support for the demonstration runs.

We acknowledge the ASCI program both for its support of the scientific research and for
providing the necessary computational resources. This work was performed under the auspices of
the U.S.D.O.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

The University of Minnesota team acknowledges support from the DOE ASCI program, through
contracts from both LLNL and LANL, from the DOE Office of Science through grants DE-FG02-
87ER25035 and DE-FG02-94ER25207, from the NSF PACI program through subcontracts from
NCSA, and from the University of Minnesota’s Supercomputing Institute.

References

[1] S. E. Anderson and P. R. Woodward, World Wide Web http://www.lcse.umn.edu/research/sppm,
Laboratory for Computational Science and Engineering, University of Minnesota (1995).

[2] R. D. Richtmyer, Taylor Instability in Shock Acceleration of Compressible Fluids, Commun. Pure.
Appl. Math, 13 (1960), 297; E.E. Meshkov, Instability of the Interface of Two Gases Accelerated by a
Shock Wave, Sov. Fluid Dyn., 4 (1969), 101.

[3] P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for Gas-Dynamical
Simulations, J. Comput. Phys., 54 (1984), pp. 174-201.

[4] P. R. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional Fluid Flow with Strong
Shocks, J. Comput. Phys., 54 (1984), pp. 115-173.

[5] B. van Leer, Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to
Godunov’s Method, J. Comput. Phys., 32 (1979), pp. 101-136.

[6] P. R. Woodward, B. K. Edgar and S. E. Anderson, PPMlib, a library of code modules available on the
World Wide Web at http://www.lcse.umn.edu/PPMlib, Laboratory for Computational Science and
Engineering, University of Minnesota (1999).

[7] Accelerated Strategic Computing Initiative, World Wide Web http://www.llnl.gov/asci, Lawrence
Livermore National Laboratory Report UCRL-MI-125923.

[8] M. Vetter and B. Sturtevant, Experiments on the Richtmyer-Meshkov Instability of an Air/SF6
Interface, Shock Waves, 4 (1995), pp. 247-252.

[9] S.E. Anderson and D.H. Porter, Laboratory for Computational Science and Engineering, University
of Minnesota, private communication.

[10] P. E. Dimotakis, The Mixing Transition in Turbulence, J. Fluid Mech., in press (1999).



9

Fig. 1. Diagram depicting shock tube experiment. The two gases are separated by the membrane,

which is pushed against the wire mesh. Density is in brown, and pressure in green (not to scale). The

shock moves from left to right. The calculation is carried out in a reference frame in which the contact

discontinuity is roughly stationary.



10

Fig. 2. Volume rendering of entropy for the 2048 x 2048 x 1920 case.



11

Fig. 3. Volume rendering of entropy for the 384 x 384 x 384 case.



12

Fig. 4. Comparison of 1024 x 1024 x 1024 case with 2048 x 2048 x 1920 case. Shown is volume-rendered

entropy. The fine-scale structure is present in both simulations.



13

Fig. 5. Comparison of 192 x 192 x 192 case with 384 x 384 x 384 case. Shown is volume-rendered

entropy. Both simulations show large-scale structures.



14

Fig. 6. Comparison of two-dimensional (top) and three-dimensional (bottom) simulations. Each case

has 1024 gridpoints per direction. In two dimensions, rather than developing random-looking fine-scale

structure, there is an inverse cascade leading to extended structures with sharper boundaries.



15

Wavenumber

V
z 

E
ne

rg
y 

D
en

si
ty

-5/3

1 10 100 1000 10000
10^-12

10^-10

10^-8

10^-6

10^-4

2048^3

1 10 100 1000 10000
10^-12

10^-10

10^-8

10^-6

10^-4

1024^3

1 10 100 1000 10000
10^-12

10^-10

10^-8

10^-6

10^-4

384^3

1 10 100 1000 10000
10^-12

10^-10

10^-8

10^-6

10^-4

Fig. 7. Energy spectra of z velocity at midplane versus resolution. An inertial range is present,

consisting of wave numbers ranging from roughly 30 to 300 for the highest resolution case.



16

✕
✕ ✕ ✕

✕

A
m

pl
itu

de

Time0 5 10 15
0

0.1

0.2

0.3

0.4

0 5 10 15
0

0.1

0.2

0.3

0.4

0 5 10 15
0

0.1

0.2

0.3

0.4

0 5 10 15
0

0.1

0.2

0.3

0.4

0 5 10 15
0

0.1

0.2

0.3

0.4

Expt. normalized
by mesh size

Expt. normalized
by box size

Fig. 8. Mixing layer width at 384 x 384 x 384 (magenta), 1024 x 1024 x 1024 (blue), and 2048 x

2048 x 1920 (green), and compared with experiment. The black boxes correspond to the simulation and

experiment having the same wire grid size; the red crosses correspond to the simulation and experiment

having the same box size.


